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SUMMARY

-y This paper discusses the two-sample test of iocation

based on the comparison of two distribution free one-sample

confidence intervals derived from sign statistics. This

test procedure, first introduced by Hettmansperger (1986),

rejects the null hypothesis of equal population medians

when the two intervals are disjoint. He presents three dif-

ferent ways to select the two one-sample intervals and one

choice leads to Mood's test. All solutions have the same

Pitman efficiency. This paper shows that the choices can

be distinguished on the basis of Bahadur's efficiency. We

formulate the problem in terms of (asymptotically) fixed-

width confidence intervals. In this context various median

tests (including Mood's test) arise as special cases and

they yield different performance. The solution that spe-

cifies equal asymptotic lengths for the one-sample inter-

vals (which is different from Mood's test) is recommended.

Some key words: Bahadur efficiency; Fixed-width confidence

interval; Pitman efficiency; Probability

of large deviations; Sign statistic; Two-

sample location problem.



1. INTRODUCTION

The two-sample test of location discussed in this

paper is based on the comparison of two distribution

free one-sample confidence intervals. The test rejects

the null hypothesis of equal population medians if the

intervals fail to overlap.

More precisely, let IXi}i=1 and {Yi1in re-

present independent random samples from the respective

populations Fex(.) = F(.-- x) and Fe (.) = F(-e y)
x y

with unique medians 8x and y . Let p denote the

pth quantile of F, 0 < p < 1 .We assume that for

all p

F(.) is twice differentiable at p
(1.1)

with F'(&p) - f(&p) > 0

Let the sign-interval on the X-sample be given by

[LxUX] = [X(d )IX(ux) (1.2)

where the endpoints are the dt h and uth observa-x x

tions of the ordered sample

X(I )  X(2 )  - (m)

% J . ¢ v .' ". -; . - % . . \" ; v '''.. . 'i 'C.,;'.'l .q -S,.., .. ,''.V ' .'" .
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with ux = m - d + 1 . The depth dx , which specifies

how deep into the ordered sample the endpoints lie, is

defined by

d = m/2 + .5 - z m1/2/2 (1.3)x x

where zx  is such that f(-z x a x and 0 is the

standard normal c.d.f.. We refer to this interval as a

sign-interval since it can be derived by inverting the

acceptance region of a size 2a x  two-sided sign test.

Similarly define the sign-interval [L yUy I on the

Y-sample. Let A = By - Bx . To test Ho : A = 0

versus HA : A # 0 , reject H if the sign-intervals

are disjoint. That is,

if U < L or U <L x  . (1.4)

A two-sample confidence interval for 6 is given by

(Ly - Ux I Uy - LI . (1.5)

This procedure has been introduced by Hettmans-

perger (1984) who derives the following two main limit-

ing results: Suppose m,n * such that m/(m+n) X ,

0< A<.

I

- .



-3

(i) Then under H0 : A = 0 ,

a = P{U < L } + P{Uy < L I 20(-z) (1.6)
x y y x

where z = (1-)1/2 zx + X 1/2 .y (1.7)

(ii) Let A denote the length of the two-sample

confidence interval (1.5). If z and

Z y satisfy the condition (1.7), then with

probability 1

(m+n) 1/2 A - z/((X(l-X)) 1 / 2 f(O)) . (1.8)

We note that the two one-sample intervals (for e andx

9y) have respective approximate coverage probabilities
y

x  1 - 2a x and yy = 1 - 2ay . This follows from

(1.3) and the normal approximation to the binomial

distribution.

Now let a and X ,0 < X < 1 , be given and de-

fine z by a = 20(-z) . Select z and z so thatx y

they satisfy (1.7). By (1.3) this determines the one-

sample sign-intervals (that is, the depths). The re-

sulting two-sample test is of approximate size a .

Clearly there are infinitely many choices for zx  and

z y. Hettmansperger (1984) discusses three different

choices. He recommends to select equal confidence coef-

ficients x = , or equivalently zx  z because

, -

4 . . . . . - . .v . . . .. l'linu lm l mluJ m m u m m m m
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these z values are essentially constant with respect

to reasonable ratios of sample sizes. More precisely,

by (1.7),

1/2 1/2Zx = Zy= z(X i+(l-X)1/2

Another choice leads to Mood's (1950) median test.

(For a discussion see Pratt (1964) and Gastwirth (1968)).

Let, for simplicity, m + n = 2r , m 4 n . The Mood-in-

terval for A is defined as follows:

[Y(d) - X((m+n)/2-d+l) ' Y(n-d+l) - X ((m-n)/2+d)•

This interval is obtained by inverting the P.ceptance

region of a two-sided test based on the Mood statistic

which follows a hypergeometric distribution under

H0 : A = 0 . From the normal approximation d is cho-

sen so that an approximate size a test is achieved.

That is,

d = n/2 + .5 - z(mn/(4(m+n-1))) 1 / 2  (1.9)

where z is such that 0(-z) = a/2 . We can consider

this interval as being constructed from two sign-inter-

vals with depths dy = d and d = (m-n)/2 + d .S ex y .t
Statement (1.9) is (asymptotically) equivalent to (1.3)
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if

1/2 1/2
Zy= , zX =,z(-)

and the condition (1.7) is clearly satisfied.

The starting point for this paper is the obser-

vation that, according to (1.8), all choices of the

zx and z y lead to the same Pitman efficiency, as

long as (1.7) is satisfied. The choices can be distin-

guished, however, by an alternative notion which is

Bahadur's efficiency. The analysis of this efficiency

leads to a formulation of the problem in terms of

(asymptotically) fixed-width confidence intervals. We

compare the rates at which the Type I error probabili-

ties tend to zero while the lengths remain fixed at

(or tend to) a positive constant. In this context the

various special choices (including Mood's test) yield

different performance. On the basis of this efficiency

criterion, we then recommend the solution that speci-

fies equal asymptotic lengths for the one-sample in-

tervals which is (except in the case of equal sample

sizes) different from both the Mood solution and the

equal confidence coefficients recommendation.

In Section 2 the exact size of the two-sample test

* * * * * *. . . ... * . •, . .- .-. , - .' ' " " . . - .. . ., ,' . ," -% ., -'.' . .- . , ' .
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is derived. In Section 3 the two-sample test procedure

(1.4) is represented in terms of a sum statistic, and

the probability distribution function (under H ) of

this statistic is derived using an urn model argument.

A large deviations result is obtained and Bahadur effi-

ciency is discussed in Section 4. Numerical evaluations

and recommendations for the practitioner are given in

the final section.
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2. TYPE I ERROR PROBABILITY

Under H A = 0 ,the {Xi}m and {Yi n

0 ii=l il

are independent random samples from the same popula-

tion F (x) = F(x-e) , where F(x) is a continuous

cumulative distribution function with unique median

0 . Without loss of generality, we take 6 = 0 . The

exact size of the two-sample two-sided test (1.4) is

obtained at once from the following theorem.

th
Theorem 2.1. Let X (a) denote the a ordered ob-

m
servation from {Xil and let Y(b) denote the bth

ordered observation from {Yi1n  Then

m = (n+l) r (b+t) r (mn+l-b-t) (2.1)
P (X a) (b '5 r, (2.1(a) Y(b)) t-a t (b) r (n-b+l) r (n+m~l)

Proof. We note that

P(X(a) 'Y(b) =P(F(X (a) <F(Y(b))) = P(U 1(a) <U 2 (b))

where Ul(a) - Beta (a,m-a+l) , U2(b) Beta (b,n-b+l)

and they are independent. Thus,



P (UzI (a) < U2 (b))

Sy r (msl) a-i r-a r(n+l) b-i n-b= r r xa-(1-x) r r y (-)dd

o o (a) (m-a+l) (b) (n-b+l)

1 m t r (n+l) b- n-b
r ( Z (M l-y -t) •  y (l-y) dy
o ta t (b) r (n-b-i)

= r tI (n+l) (b+-t) r (n+m4--b-t)
Z (b)

t=a t (b) r (n-b+l) r (mn+l)

r1 (m+n+i) b4t-1 n+m-b-tdy

rF y (i-Y) bty
o (b+t) (n+ml-b-t)

The integrand is a beta probability density function with

parameters a = b + t and = n + m - b - t + 1. Hence,

the integral is 1

Corollary 2.1. The exact size of the two-sample two-sided

test (1.4), a , is given by

a = P(U x< Ly) + P(U y< Lx )

(n n M
m t d d n td dSY • + E X • x (2.2)

m-Fn (dy+t) m+tn (d +t)
tt-dx +1 (dy+t) t=-n-dy+i d ) x

y x
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Proof. For P(U x <Ly) , let a = m - dx + 1 , b = d

apply (2.1), and some algebraic manipulation yields the

first term in (2.2).

For P(Uv <L x ) , first interchange m with n in

(2.1), then let a = n - d + 1 , b = d and (2.1) will,
y x

after some algebra, yield the second term of (2.2). 3

We emphasize that the size of the test depends on

the depths d and d . A change in either one of thex y

values alters the size. Once dx and dy have been se-

lected, the corollary enables us to compute the exact

probability of committing a Type I error. In the next

section we show that P(Ux <L y) = P(Uy < Lx) . Hence,

each equals a/2 . We need only compute the first or se-

cond term of (2.2) and multiply by 2 to obtain a .

In the one-sided situation, we reject HO : A = 0 in

favor of HA : A > 0 (A< 0) if Ux < L (U <Lx) .

Thus, the exact size of the one-sided test is given by

either term. For a table which provides values for

(d x,d ) for various low sample sizes (m,n) that yield

useful one-sample confience coefficients (y xy) cor-

responding to a desirable confidence coefficient y = 1 - a

for the two-sample interval, see Tableman (1984, Table 1).

For sample sizes (m,n) not found in the table, one

can use the normal approximation (1.6). To approximate

* ***.*.-*,* "*,d-.. ... ... ... ,. v' " ' ,&.--: .-.S... \J b--' ,
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the size, compute

vx a (dx-m/2-.5)/(m1 /2/2) , vy = (dy-n/2-.5)/n 1/2/2)

and evaluate 0(•) at

v = (n/(n+m)) 1/2V + (m/(n+m)) 1/2 
°

Multiply by 2 for the two-sided test. For a second-order

approximation of the size, which improves the normal ap-

proximation, see Tableman (1984, p. 28).

"I

.°*

_ _ h ~ *~ ,I S I -I'~ '~~ * .\**
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3. A SUM STATISTIC

In this section we present an equivalent formulation

of the test procedure (1.4) in terms of a sum statistic,

and obtain this statistic's null distribution. As will be

seen in the next section, this form enables us to con-

sider the problem of large deviations for use in stocha-

stic comparisons (in the Bahadur sense), and facilitates

the task of obtaining Bahadur slopes.

We first consider the one-sided situation. To test

H A 0 versus H A > 0 , we reject H if

Ux < L . Now,

X(d+l) < Y(dy) if and only if

m

E I{Xi < Y(d)}> m - d x + 1
i=l y

where I(A} is the indicator function of the event A

Let

m
S x(dy) =i I{X i < Y } " (3.1)

X y i=l (d

Then, we reject H if S x  > m x + .Thenext

theorem gives the null distribution of S x(dy

xyj

.- - . .- .. - - . .. . S
. . . .6.i
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Theorem 3.1. Under H : A = 0 , the probability distri-

bution function of S x(d ) is given by

m n
(t t d) d

(x(dy) = t) = - -. t = 0,P(Sxm+n (dy+t)(dydy)

y (3.2)

Proof. Under H we may represent the probability space

by a simple urn model with m x's and n y's . We

draw the x's and y's out of the urn one at a time

without replacement. Then the P(Sx(dy )= t) is the pro-

bability that after d - 1 + t draws we have t x's

and (d Y-1) y's and on the next draw we obtain a y
iy

Hence

mHn
t -l n-d +1

P(Sx (dy) t) m+n " m+n-d y-t+l
(d y+t-1) y

After some algebraic manipulation, expression (3.2) is

obtained. n

This probability distribution function previously appeared

in (2.2).

We note that this distribution is not symmetric. If

41-
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Y (d were replaced by the median of the Y sample, the

statistic defined in (3.1) would be Mathisen's (1943)
m

test statistic E I{X. < med yj} . When n =
i=l j=l,. .. ,n

2k - 1 , the distribution of S x(d ) is symmetric if

and only if dy = k . When n = 2k, there is no integer

dy for which S x(d ) has a symmetric distribution.

Our final observation is stated as a corollary to

Theorem 3.1.

Corollary 3.1.

P(Ux <L) = P(Uy <L x ) . (3.3)

Proof. Now, Ux  L iff S x(dy) > m - dx + 1 . Further,

m
Uy < Lx iff E I{X i > Y (n-dy+l)> m - dx + 1 . An ar-

y i=l i ndy)
gument similar to that given in the proof of (3.2) to-

gether with P{Xi = Y(n-d y+l) } = 0 gives

m n

m (t) (d) dP{ r I{x i  > Y } = t} = V •
i=l > (n-dy +1) m+n (d y+t)

dy +

The result follows.
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4. A LARGE DEVIATIONS RESULT AND BAHADUR EFFICIENCY

Briefly, Bahadur (1967) efficiency is a comparison

of the rates (called Bahadur slopes) at which the Type I

error probabilities of two test procedures tend to zero

while the Type II error probabilities remain fixed at (or tend

to) a 8(A) , 0 < $(A) < 1 , for fixed A . An alternative

formulation is in terms of (asymptotically) fixed-width

confidence intervals. That is, we compare the rates at

which the Type I error probabilities tend to zero while

the lengths remain fixed at (or tend to) a positive con-

stant L = 2a not depending on A . Such a formulation

was first considered by Serfling and Wackerly (1976) for

use in the construction and analysis of sequential con-

fidence interval procedures.

Remark 1. The equivalence between the two formulations

is seen in the following example: In the one-sample set-

ting, consider the interval centered at the sample mean

for the location parameter e , i.e. Im =[Xm ±a] ,a>0

For the sequence of intervals {I m } , define the associated

sequence of tests of Ho : 6 0 versus HA : 8 = a

(or -a) by the rejection rule, reject H if 0 i I.

It is easily seen that the Type I error probability,

2 m MP{0 I m} , tends to zero. In addition, note that

the probability of a Type II error (covering 0 when a
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or -a attains) tends to 1/2 , which suffices to make

the stochastic comparison. In general, let 8m represent

the sequence of Type II error probabilities. As long as

am tends to some quantity 8 , 0 < 8 < 1 , then if

-log um/m converges, it converges to 1/2 of the Baha-

dur slope. (See Serfling, 1980, § 10.4.2.)

Since the length of the two-sample interval (1.5)

is simply the sum of the lengths of the two one-sample

intervals, the strategy we take is to first build a fixed-

width two-sample interval from two fixed-width one-sample

intervals, then use the sum statistic formulation of the

test (3.1) to obtain the rate at which the Type I error

(or equivalently the noncoverage) probability tends to

zero. For ease of discussion we assume F is symmetric

about zero. We also assume that F satisfies assumption

(1.1) with % - b or a ,b > 0 and a > 0.

Consider the confidence interval (1.2) for e . De-

fine the depths as follows:

d(m) = m(1/2- (Px) u(m) = m - d(m) + 1 (4.1)

where px = F (ex+b) - 1/2 , b > 0 (see Figure 1). By
OX

symmetry then,

'p
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1/2 + px = F6 (6 x+b) = F(b) andI x
(4.2)

1/2 - qx M F ex(ex-b) = F(-b)

Therefore, by construction, x - b and 8 + b cor-

respond to lower and upper (1/2 -p x)  quantiles, re-

spectively, of the distribution F6 (x) . Similarly define

the depths for the endpoints of the confidence interval

for e, with

d(n) = n(1/2-py) , u(n) = n - d(n) + 1 (4.3)

where py = F ( y () - 1/2 = F(a) - 1/2 , a > 0 .

With the depths so defined we can appeal to Bahadur's

almost sure representation of the central order statistic.

(See Serfling, 1980, p. 93.) We state this representation

for the endpoints X(d(m)) , Xlu(m))

With probability 1

X(d(m ) = x - b + [(1/2- x) -F m(6x-b) I/f(b) + o(m- 1/2)

(4.4)

X (u(M)= 6 x + b + [(1/ 2+gx) - Fm(Sx+b) ]/f(b) + o(m- I/ 2

where Fm io the empirical distribution function. Let

.,. ,., .. ... , .,,,,,..• .,-.- -.- " .- '...,.,. _, .. .' -- - & '. &,i ' ' ' i--- - ---- p
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Figure 1. Description of the (l/2-p )th
Tx

(PXq

quantiles: qx= Fe x(e +b) - 1/2 , b 0

xl'

ti.
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Am , An , and Am,n denote the lengths of the intervals

(1.2), [Ly, U y , (1.5) respectively with depths defined

as in (4.1, 4.3). Then it immediately follows that as

m,n - - , with probability 1

A m - 2b , An - 2a , and A m, n  2a + 2b (4.5)

The Type I error probability of the two-sample test

(1.4) is given by

2am,n = Po{X(u(m)) < (d(n)) } + Po{Y(u(n)) < X(d(m))

= 2Po{X(u(m)) < (d(n))

where the last equality follows from the symmetry estab-

lished in Corollary 3.1. It follows from the sum sta-

tistic formulation of the test (3.1) that

am,n = P0 (Sx(d(n)) > m - d(m) + 1} (4.6)

where the null distribution of S x (d(n)) is given in

Theorem 3.1. Suppose that m,n * so that m/(m+n) X

0 < A <1 . Then (by a straightforward argument) under

A--0,

S x(d(n))/(m+n) X XF(-a) in probability

xS

-1.' A L 4-:
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and from (4.1)

(m-d(m)+l)/(m+n) - XF(b) > XF(-a)

since both a and b are positive. Therefore

am,n - 0 as m,n -

The following lemma establishes the probability of large

deviations for the sum statistic Sx (d(n)) . The proof is

given in the appendix.

Lemma 4.1. Assume m/N+ X, O<<1,N=m+n,as n,m- .

Without loss of generality, take m 4 n . Then for T

such that X/2 < T < X , with 1 = - X ,

lim N-1 logP (S (d(n)) NT}
n, m-P

= Tlog(l-p)/r)+(l-P-T)1og((l-P)/(l-P-T))

+ Qlog2- (P(l-2(py)/ 2)log(l-2y) - (p(l+2p ,)/2)log(l+29 y)

- log2 + ((2T+P(1-2py))/2)log(p(l-29y)+2T)

+ ((2- 2T-0(1-2q ))/2)log(2-2T-P(1-2 y))

where 9y is given in (4.3).

.-. r ~ ~ 5.~ . . tt..t * r qt.Y
.. E,~ d' **. ~ - *~*. -- p
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The theorem that follows establishes that the Type I

error probability of the two-sample test based on the com-

parison of two fixed-width one-sample sign-intervals con-

verges to zero at an exponential rate. We refer to this

rate as the index of exponential convergence and denote

it by e(a,b) as it depends on the choices of a and b

as well as the distribution F

Theorem 4.1. Under the same assumptions as those given

in Lemma 4.1, for the sequence of intervals (1.5) with

depths defined by(4.1) and (4.3), the index of exponen-

tial convergence of amn (4.6) is

-e(a,b) = lim N-1log
nm,n

- -(1-P)F (b) logF (b) - (1-p) (1-F (b)) log(1-F (b))

+ Plog2 - log2

-P (1-F (a)) log(2 (1-F (a))) -pF (a) log2F (a) (4.7)

+((i-P)F (b) + p (1-F (a))) log(2 (-P)F (b)+2P (1-F (a)))

+ (1-(1-P)F (b) -p (1-F (a)) )log(2-2 (l-p)F (b) -2p (1-F (a)))

IrP
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Proof. From (4.1) and (4.2), we have

m - d(m) + 1 = N(XF(b) +o(1)) , b > 0

Let TN denote XF(b) + o(i) , and T denote XF(b)

Then

TN -4 T as n,m , and

A/2 < XF(b) < X

From (4.3),

(1-X) (l-2 py)/2 = (1-A)F(-a) = pF(-a)

Hence, Lemma 4.1 applies with T replaced by FY(b)

After some algebraic manipulation, the expression (4.7)

is obtained.

Remark 2. Four interesting cases are the following:

(a) If a = b , the index is symmetric in p and

1 - p ; (i.e. in 1 - A and A )

(b) If a = b and m = n , the index reduces to the in-

dex of Mood's test. (See Woodworth, 1970.)
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(c) If a and b are related via the relationship

XF(b) + (1-X)F(-a) = 1/2 , (4.8)

then the index is again the index of Mood's test.

d) Suppose that the asymptotic length of one interval

vanishes, e.g. a = 0 . Then the index reduces to

that of Mathisen's statistic (Killeen, et al., 1972).

(e) If m = n then for a + b = c , the index is

maximized by a = b = c/2 which yields Mood's

statistic. On the other hand, the index is a minimum

for a + b = c just when a or b is 0 which

yields Mathisen's statistic. Hence, for equal sample

sizes Mood's test is best and Mathisen's test is worst.

However, for more extreme sample size ratios, Mathisen's

test has a larger index than Mood's test; (see Killeen,

et al., 1972).

These remarks are crucial in that they show the intricate

relationship of the special Mood and Mathisen-intervals to

that of the general two-sample interval constructed from two

arbitrarily chosen (asymptotically) fixed-width sign-intervals.
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5. NUMERICAL COMPARISONS AND DISCUSSION

Thus, various median tests arise as special cases

as a result of formulating the problem in terms of

(asymptotically) fixed-width intervals. In this context

we are able to distinguish between the two-sample test

based on the Mood-interval and any other solution to the

condition (1.7).

In order to make efficiency comparisons we specify

a constant c > 0 and then consider values a and b

such that a + b = c with specified ratio a/b . For the

Mood-interval, however, we are not free to do this. The

relationship (4.8) in terms of c is

XF(b) + (l-X)F(b-c) = 1/2 . Once c is specified, b

and hence a are determined by this additional constraint.

The (Bahadur) asymptotic efficiency as m,n o - (with

m/(m+n) - X) of Procedure A relative to Procedure B

is then

eff(A,8) = index(A)/index(8)

Table 1 provides numerical evaluation of the indices of

exponential convergence. We select values of 1/2 , 1/4

1/8 for P = 1 - A ; and values of 1 , 2/3 , and 3/2

for the ratio a/b . Without loss of generality, we take

.-..9. , ; -- .. * -. . * . -.9-.. **. *...-."** . . *-. *' *,* .' . . *- ..-, , , .
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(a,p) to correspond to the interval formed on the Y-sample.

Evaluation of the indices is done at the standard normal

distribution. For tables with indices evaluated at the

logistic and Laplace distributions see Tableman (1984).

These tables reveal similar information and thus are omit-

ted. Figure 2 supplies a graphical display of the effi-

ciencies of the equal asymptotic lengths (a = b) solution

relative to the Mood-interval.

Based on the information displayed in the table and

figure, and with economic considerations in mind, we re-

commend taking a - b for a specified c . For if obser-

vations from each population are equal in cost, selecting

equal sample sizes yields the more efficient procedure (as

always). (From Remark 2 (b), this solution is asymptotically

equal to the Mood procedure.) On the other hand, if one po-

pulation is more expensive to sample from than the other,

then taking two sign-intervals with equal asymptotic lengths

will provide the more efficient procedure for more extreme

values of P ; and, as was noted in Remark 2 (a), the index

is symmetric in p and (1-p) . Therefore, an experimenter

can adjust the ratio of sample sizes to meet cost con-

straints (for example) , pick a = b , and obtain a more

(Bahadur) efficient procedure than if he had chosen the

Mood-interval procedure.

%% S
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Table I. Index of exponential convergence x10 3

Standard normal c.d.f.

c

P a/b .01 .1 1 2 4

Mood 1/1 .008 .795 75.2 256 585

1/2 2/3 .008 .795 74.9 252 562

3/2 .008 .795 74.9 252 562

Mood .006 .596 53.9 155 215

(b-) *  .0025 .025 .234 .383 .431

1/4 1/1 .006 .597 56.8 196 466

2/3 .006 .597 57.1 199 465

3/2 .006 .596 56.0 188 430

Mood .0035 .348 29.9 76.1 95.5

(b=) .00125 .0125 .1122 .168 .18

1/8 1/1 .0035 .348 33.4 118 300

2/3 .0035 .348 33.8 122 309

3/2 .0035 .348 32.8 111 267

* b determined by XF(b) + (1-X)F(b-C) = 1/2

. ' . .. .. li li -
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3.0p =1/8

2.75 -

2.50

2.25

2.0 p= 1/4

1.75

1.50

1.25

1.0 P = 1/2

12 3 4 c

Figure 2, Bahadur efficiencies of equal asymptotic lengths

(a-b) solution with respect to Mood-interval

evaluated at the standard normal.



- 27 -

APPENDIX

Proof of Lemma 4.1. We show that conditions of Theorem

2.2 of Killeen, et al. (1972) are satisfied. Let [x]

denote the greatest integer < x . From Theorem 3.1,

lir N-l lo 0 o{Sx(d(n)) = [NT

m rN locig( m) + lin N-I og( n lim N-1  N
[NT] dn) l09gd(n)+[N-J)

+ limN-llog(d(n)/(d(n)+[N-T]))

(1) With d(n) defined by (4.3) ,

d(n)/1(d(n)+[NTI) - ((l-X) (1-2y)/2)/((l-X) (i-2*cy)/2 T)

Therefore, lim N- log(d(n)/(d(n)+[NT])) = 0 .

(2) In the next three steps, we use the following:

If lim a/n = a , lim b/n = B , 0 < B < a <- where
n-1= n-)-

a,b are integers, then it follows from Sterling's

formula that

urn-l log(b) = Blog(a/B) + (a-8)log(a/(a-a))

(3) m/N - X , [NT] /N-T; and by assumption, 0 < T <

Therefore, by (2)
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lim N- 1([N0( ) Tlog(X/T) + (X-T)log(X/(X-T))

(4) n/N - (1-X) ; by (4.3),

dl(n),/N -o. (1-X) (1-2(py)/12 < (1-X).

Therefore, by (2)

lim N log( n = plog2 - (p(1-21/2) log(1-2(p

- (P (l+2(py)/2) log(l+2(py)

where p = 1 - X .

(5) N/N = 1 ; (d(n) + [NT])/N - (l-X))(-2py)/2 + T < 1

Therefore, by (2) and after some algebra

-lir N 1 0 l+N

= -log2 + ( (2T+P (l-2py))/2)1log(p(I-2(py)+2T)

+ ((2-2T-P (1-2,2)/2) log(2-2T-P (l-2py)) .

Summing up (1), (3) , (4) , and (5), we obtain

lir N- logP o(Sx(d(n)) - [NT])
n ,in"-
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=the expression stated in Lemma.

This along with the fact that

lrn N1 logP0({S x(d(n)) I expN i/2 - implies Condition

2.2 (of Theorem 2.2) is satisfied. Now,

P (Sx(d(n)) - ENT] + ll/P0 {Sx(d(n)) - (NT]I)

-((m-(NT])/((NT]+l)) ((d(n)+(NT j)/ (N-d(n) -ENT)

which is positive arnd finite.

Therefore,

N -1lcg(P (Sx(d(n)) - NT I +11/P (Sx(d(n)) = NTJ1}) -.0 as m~

Condition 2.1 is satisfied.

To check the non-increasing property: Let x > N =NT

Since A/2 < T A ,we only need to check for x such

that

NT < x < NA

-k~~ -I . 1 1 1 . 1 ,. '11 . I . L .. II .1 L % .
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Now,

P{Sx(d(ln)) - (x]+ l1/P{Sx(d(n)) - [x]}

- ((m-[x]l)/[x+ll)((d(n)+[xl)/(N-dn)-xl))

Need to show that for sufficiently large N , this ratio

is less than 1 . This follows immediately from the fact

that

A(1-2iy )/2 < A/2

and that A/2 < T < X . Therefore, by Theorem 2.2 of

Killeen, et. al.,

lim N-llogPo{Sx(d(n)) >N-r - lira N-1logPo{Sx(d(n)) = [N']}.
null-

U

V

p'

p

- - ~ * 9 .. . . . . . . .~ S. *
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